Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biometals ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642266

RESUMEN

BACKGROUND: In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population. METHODS: In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass. RESULTS: The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters. DISCUSSION: and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.

2.
Exp Biol Med (Maywood) ; 248(20): 1754-1767, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37916410

RESUMEN

Even though smoking has been scarcely studied in osteoarthritis (OA) etiology, it is considered a controversial risk factor for the disease. Exposure to tobacco smoke has been reported to promote oxidative stress (OS) as part of the damage mechanism. The aim of this study was to assess whether smoking increases cartilage damage through the generation of OS. Peripheral blood (PB) and synovial fluid (SF) samples from patients with OA were analyzed. The samples were stratified according to smoking habit, Kellgren-Lawrence score, pain, and cotinine concentrations in PB. Malondialdehyde (MDA), methylglyoxal (MGO), advanced protein oxidation products (APOPs), and myeloperoxidase (MPO) were assessed; the activity of antioxidant enzymes such as gamma-glutamyl transferase (GGT), glutathione S-transferase (GST) and catalase (CAT), as well as the activity of arginase, which favors the destruction of cartilage, was determined. When stratified by age, for individuals <60 years, the levels of MDA and APOPs and the activity of MPO and GST were higher, as well as antioxidant system activity in the smoking group (OA-S). A greater degree of pain in the OA-S group increased the concentrations of APOPs and arginase activity (P < 0.01 and P < 0.05, respectively). Arginase activity increased significantly with a higher degree of pain (P < 0.01). Active smoking can be an important risk factor for the development of OA by inducing systemic OS in young adults, in addition to reducing antioxidant enzymes in older adults and enhancing the degree of pain and loss of cartilage.


Asunto(s)
Osteoartritis de la Rodilla , Adulto Joven , Humanos , Anciano , Persona de Mediana Edad , Osteoartritis de la Rodilla/metabolismo , Antioxidantes/metabolismo , Fumar/efectos adversos , Arginasa/metabolismo , Oxidación-Reducción , Dolor
3.
J Nephrol ; 36(5): 1383-1393, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253904

RESUMEN

BACKGROUND: In recent years, chronic kidney disease has increased in the pediatric population and has been related to environmental factors. In the diagnosis of kidney damage, in addition to the traditional parameters, early kidney damage biomarkers, such as kidney injury molecule 1, cystatin C, and osteopontin, among others, have been implemented as predictors of early pathological processes. OBJECTIVE: This study aimed to evaluate the relationship between exposure to environmental pollutants and early kidney damage biomarkers. METHODS: A cross-sectional pilot study was conducted in February 2016 and involved 115 apparently healthy children aged 6-15 residing in Apizaco, Tlaxcala. Participant selection was carried out randomly from among 16,472 children from the municipality of Apizaco. A socio-demographic questionnaire included  age, sex, education, duration of residence in the area, occupation, water consumption and dietary habits, pathological history, and some non-specific symptoms. Physical examination included blood pressure, weight, and height. The urine concentrations of urinary aluminum, total arsenic, boron, calcium, chromium, copper, mercury, potassium, sodium, magnesium, manganese, molybdenum, lead, selenium, silicon, thallium, vanadium, uranium, and zinc, were measured. Four of the 115 participants selected for the study were excluded due to an incomplete questionnaire or lack of a medical examination, leaving a final sample population of 111 participants. RESULTS: The results showed a mean estimated glomerular filtration rate of 89.1 ± 9.98 mL/min/1.73m2 and a mean albumin/creatinine ratio of 12.9 ± 16.7 mg/g urinary creatinine. We observed a positive and significant correlation between estimated glomerular filtration rate with fluoride, total arsenic and lead, and a correlation of albumin/creatinine ratio with fluoride, vanadium, and total arsenic. There was also a significant correlation between the early kidney damage biomarkers and fluoride, vanadium, and total arsenic, except for cystatin C. CONCLUSION: In conclusion, our results show that four urinary biomarkers: α1-microglobulin, cystatin C, kidney injury molecule 1, and neutrophil gelatinase-associated lipocalin are related to environmental exposure to urinary fluoride, vanadium, and total arsenic in our pediatric population.


Asunto(s)
Arsénico , Insuficiencia Renal Crónica , Humanos , Niño , Arsénico/efectos adversos , Arsénico/análisis , Cistatina C , Fluoruros , Vanadio , México/epidemiología , Estudios Transversales , Creatinina , Proyectos Piloto , Riñón , Biomarcadores , Albúminas , Tasa de Filtración Glomerular , Lipocalina 2
4.
Chem Biol Interact ; 379: 110519, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121298

RESUMEN

The proximal tubule is a target of subchronic exposure to fluoride (F) in the kidney. Early markers are used to classify kidney damage, stage, and prognosis. MicroRNAs (miRNAs) are small sequences of non-coding single-stranded RNA that regulate gene expression and play an essential role in developing many pathologies, including renal diseases. This study aimed to evaluate the expression of Cytokine-Chemokine molecules (IL-1α/1ß/4/6/10, INF-γ, MIP-1α, MCP-1, RANTES, and TGF ß1/2/3) and inflammation-related miRNAs to evidence the possible renal mechanisms involved in subchronic exposure to F. Total protein and miRNAs were obtained from the renal cortex of male Wistar rats exposed to 0, 15 and 50 mg NaF/L through drinking water during 40 and 80 days. In addition, cytokines-chemokines were analyzed by multiplexing assay, and a panel of 77 sequences of inflammatory-related miRNAs was analyzed by qPCR. The results show that cytokines-chemokines expression was concentration- and time-dependent with F, where the 50 mg NaF/L were the main altered groups. The miRNAs expression resulted in statistically significant differences in thirty-four miRNAs in the 50 mg NaF/L groups at 40 and 80 days. Furthermore, a molecular interaction network analysis was performed. The relevant pathways modified by subchronic exposure to fluoride were related to extracellular matrix-receptor interaction, Mucin type O-glycan biosynthesis, Gap junction, and miRNAs involved with renal cell carcinoma. Thus, F-induced cytokines-chemokines suggest subchronic inflammation; detecting miRNAs related to cancer and proliferation indicates a transition from renal epithelium to pathologic tissue after fluoride exposure.


Asunto(s)
MicroARNs , Neoplasias , Ratas , Masculino , Animales , Fluoruros/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Ratas Wistar , Citocinas/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Inflamación/inducido químicamente
5.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298880

RESUMEN

BACKGROUND: The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.


Asunto(s)
Cadmio/metabolismo , Endocitosis/fisiología , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metalotioneína/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Nefronas/metabolismo
6.
Environ Toxicol Pharmacol ; 83: 103587, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33460805

RESUMEN

PM2.5 exposure is associated with a glomerular filtration rate (GFR) reduction, and renal tissue damage. The goal of this study was demonstrate the acute effect of PM2.5 on the kidney. Male rats were acutely exposed to PM2.5 or filtered air. Blood pressure was mesure and early kidney biomarkers were evaluated in serum and urine samples, and also IL-1ß, IL-6 and TNFα were determined. Oxidative biomarkers, angiotensin/bradykinin-related proteins, KIM-1, IL-6 and histology were determined. Blood pressure, GFR, and early kidney damage biomarkers increase together with oxidative biomarkers and angiotensin/bradykinin endocrine-related proteins increased after exposure to PM2.5. Urinary IL-6 increased after exposure to PM2.5, whereas in kidney cortex decreased. Histological changes were observed and accompanied by the induction of KIM-1. Acute exposure to PM2.5 not decline kidney function. However, it can induce early kidney damage biomarkers, oxidative stress, inflammation and angiotensin mediators, which perhabs culminates in a lose of renal function.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Enfermedades Renales/etiología , Riñón/efectos de los fármacos , Material Particulado/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Citocinas/inmunología , Citocinas/orina , Inflamación/etiología , Inflamación/inmunología , Inflamación/patología , Inflamación/fisiopatología , Riñón/patología , Riñón/fisiología , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Enfermedades Renales/orina , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Masculino , Ratas Sprague-Dawley
7.
Clin Rheumatol ; 40(1): 279-285, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32557253

RESUMEN

INTRODUCTION/OBJECTIVES: Articular cartilage and periarticular muscle tissues are strongly affected during knee osteoarthritis (OA). Creatine kinase (CK) is an enzyme expressed in several tissues, but the isoform CK-MM is specific of skeletal muscle, and its serum concentration is used as a biomarker of muscle damage. Genetic variants of the CKM gene have been associated with various pathologies, but to date, there are no reports of association with OA. Due to the rs4884 polymorphism being well represented in the Mexican population, it is used as an ancestry informative marker; thus, the goal of this preliminary report was to evaluate the association of this polymorphism in primary knee OA Mexican patients. METHOD: Eighty-seven patients with primary knee OA were compared with 107 healthy controls. Serum CK-MM was determined using the dot blot system, and genotyping was performed using the OpenArray system. Logistic regression models were used to assess the association between the rs4884 polymorphism and OA susceptibility adjusting by gender, age, and body mass index. RESULTS: There were no significant differences in serum CK-MM values between patients and controls. The GG genotype and the G allele had a higher frequency in the control group compared with the OA group (24.3% vs. 12.6%, OR = 0.34, 95% CI = 0.14-0.84, P = 0.019; and 40.2% vs. 28.2%, OR = 0.51, 95% CI = 0.32-0.82, P = 0.005, respectively). CONCLUSIONS: Our results suggest a protection role of the rs4884 polymorphism against knee OA development; further studies are required to confirm it. Key Points • CK-MM enzyme catalyzes the conversion of creatine and ATP to create phosphocreatine and ADP; this reaction is reversible. • In tissues that consume ATP rapidly, such as skeletal muscle, the phosphocreatine serves as an important energy reservoir. • During knee OA, peripheral muscle tissues of the joint may be affected. • The rs4884 polymorphism of the CKM gene may participate as a protective factor in the development of OA.


Asunto(s)
Osteoartritis de la Rodilla , Estudios de Casos y Controles , Creatina , Forma MM de la Creatina-Quinasa , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , México , Músculos , Osteoartritis de la Rodilla/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...